23 research outputs found

    Geometric Dilation and Halving Distance

    Get PDF
    Let us consider the network of streets of a city represented by a geometric graph G in the plane. The vertices of G represent the crossroads and the edges represent the streets. The latter do not have to be straight line segments, they may be curved. If one wants to drive from a place p to some other place q, normally the length of the shortest path along streets, d_G(p,q), is bigger than the airline distance (Euclidean distance) |pq|. The (relative) DETOUR is defined as delta_G(p,q) := d_G(p,q)/|pq|. The supremum of all these ratios is called the GEOMETRIC DILATION of G. It measures the quality of the network. A small dilation value guarantees that there is no bigger detour between any two points. Given a finite point set S, we would like to know the smallest possible dilation of any graph that contains the given points on its edges. We call this infimum the DILATION of S and denote it by delta(S). The main results of this thesis are - a general upper bound to the dilation of any finite point set S, delta(S) - a lower bound for a specific set P, delta(P)>(1+10^(-11))pi/2, which approximately equals 1.571 In order to achieve these results, we first consider closed curves. Their dilation depends on the HALVING PAIRS, pairs of points which divide the closed curve in two parts of equal length. In particular the distance between the two points is essential, the HALVING DISTANCE. A transformation technique based on halving pairs, the HALVING PAIR TRANSFORMATION, and the curve formed by the midpoints of the halving pairs, the MIDPOINT CURVE, help us to derive lower bounds to dilation. For constructing graphs of small dilation, we use ZINDLER CURVES. These are closed curves of constant halving distance. To give a structured overview, the mathematical apparatus for deriving the main results of this thesis includes - upper bound: * the construction of certain Zindler curves to generate a periodic graph of small dilation * an embedding argument based on a number theoretical result by Dirichlet - lower bound: * the formulation and analysis of the halving pair transformation * a stability result for the dilation of closed curves based on this transformation and the midpoint curve * the application of a disk-packing result In addition, this thesis contains - a detailed analysis of the dilation of closed curves - a collection of inequalities, which relate halving distance to other important quantities from convex geometry, and their proofs; including four new inequalities - the rediscovery of Zindler curves and a compact presentation of their properties - a proof of the applied disk packing result.Geometrische Dilation und Halbierungsabstand Man kann das von den Straßen einer Stadt gebildete Netzwerk durch einen geometrischen Graphen in der Ebene darstellen. Die Knoten dieses Graphen repräsentieren die Kreuzungen und die Kanten sind die Straßen. Letztere müssen nicht geradlinig sein, sondern können beliebig gekrümmt sein. Wenn man nun von einem Ort p zu einem anderen Ort q fahren möchte, dann ist normalerweise die Länge des kürzesten Pfades über Straßen, d_G(p,q), länger als der Luftlinienabstand (euklidischer Abstand) |pq|. Der (relative) UMWEG (DETOUR) ist definiert als delta_G(p,q) := d_G(p,q)/|pq|. Das Supremum all dieser Brüche wird GEOMETRISCHE DILATION (GEOMETRIC DILATION) von G genannt. Es ist ein Maß für die Qualität des Straßennetzes. Ein kleiner Dilationswert garantiert, dass es keinen größeren Umweg zwischen beliebigen zwei Punkten gibt. Für eine gegebene endliche Punktmenge S würden wir nun gerne bestimmen, was der kleinste Dilationswert ist, den wir mit einem Graphen erreichen können, der die gegebenen Punkte auf seinen Kanten enthält. Dieses Infimum nennen wir die DILATION von S und schreiben kurz delta(S). Die Haupt-Ergebnisse dieser Arbeit sind - eine allgemeine obere Schranke für die Dilation jeder beliebigen endlichen Punktmenge S: delta(S) - eine untere Schranke für eine bestimmte Menge P: delta(P)>(1+10^(-11))pi/2, was ungefähr der Zahl 1.571 entspricht Um diese Ergebnisse zu erreichen, betrachten wir zunächst geschlossene Kurven. Ihre Dilation hängt von sogenannten HALBIERUNGSPAAREN (HALVING PAIRS) ab. Das sind Punktpaare, die die geschlossene Kurve in zwei Teile gleicher Länge teilen. Besonders der Abstand der beiden Punkte ist von Bedeutung, der HALBIERUNGSABSTAND (HALVING DISTANCE). Eine auf den Halbierungspaaren aufbauende Transformation, die HALBIERUNGSPAARTRANSFORMATION (HALVING PAIR TRANSFORMATION), und die von den Mittelpunkten der Halbierungspaare gebildete Kurve, die MITTELPUNKTKURVE (MIDPOINT CURVE), helfen uns untere Dilationsschranken herzuleiten. Zur Konstruktion von Graphen mit kleiner Dilation benutzen wir ZINDLERKURVEN (ZINDLER CURVES). Dies sind geschlossene Kurven mit konstantem Halbierungspaarabstand. Die mathematischen Hilfsmittel, mit deren Hilfe wir schließlich die Hauptresultate beweisen, sind unter anderem - obere Schranke: * die Konstruktion von bestimmten Zindlerkurven, mit denen periodische Graphen kleiner Dilation gebildet werden können * ein Einbettungsargument, das einen zahlentheoretischen Satz von Dirichlet benutzt - untere Schranke: * die Definition und Analyse der Halbierungspaartransformation * ein Stabilitätsresultat für die Dilation geschlossener Kurven, das auf dieser Transformation und der Mittelpunktkurve basiert * die Anwendung eines Kreispackungssatzes Zusätzlich enthält diese Dissertation - eine detaillierte Analyse der Dilation geschlossener Kurven - eine Sammlung von Ungleichungen, die den Halbierungsabstand zu anderen wichtigen Größen der Konvexgeometrie in Beziehung setzen, und ihre Beweise; inklusive vier neuer Ungleichungen - die Wiederentdeckung von Zindlerkurven und eine kompakte Darstellung ihrer Eigenschaften - einen Beweis des angewendeten Kreispackungssatzes

    On the stability of cooperation under indirect reciprocity with first-order information

    Get PDF
    Indirect reciprocity describes a class of reputation-based mechanisms which may explain the prevalence of cooperation in large groups where partners meet only once. The first model for which this has been demonstrated was the image scoring mechanism. But analytical work on the simplest possible case, the binary scoring model, has shown that even small errors in implementation destabilize any cooperative regime. It has thus been claimed that for indirect reciprocity to stabilize cooperation, assessments of reputation must be based on higher-order information. Is indirect reciprocity relying on frst-order information doomed to fail? We use a simple analytical model of image scoring to show that this need not be the case. Indeed, in the general image scoring model the introduction of implementation errors has just the opposite effect as in the binary scoring model: it may stabilize instead of destabilize cooperation

    On the geometric dilation of closed curves, graphs, and point sets

    Full text link
    The detour between two points u and v (on edges or vertices) of an embedded planar graph whose edges are curves is the ratio between the shortest path in in the graph between u and v and their Euclidean distance. The maximum detour over all pairs of points is called the geometric dilation. Ebbers-Baumann, Gruene and Klein have shown that every finite point set is contained in a planar graph whose geometric dilation is at most 1.678, and some point sets require graphs with dilation at least pi/2 = 1.57... We prove a stronger lower bound of 1.00000000001*pi/2 by relating graphs with small dilation to a problem of packing and covering the plane by circular disks. The proof relies on halving pairs, pairs of points dividing a given closed curve C in two parts of equal length, and their minimum and maximum distances h and H. Additionally, we analyze curves of constant halving distance (h=H), examine the relation of h to other geometric quantities and prove some new dilation bounds.Comment: 31 pages, 16 figures. The new version is the extended journal submission; it includes additional material from a conference submission (ref. [6] in the paper

    Evolutionary Stability of Indirect Reciprocity by Image Scoring

    Get PDF
    Indirect reciprocity describes a class of reputation-based mechanisms which may explain the prevalence of cooperation in groups where partners meet only once. The first model for which this has analytically been shown was the binary image scoring mechanism, where one's reputation is only based on one's last action. But this mechanism is known to fail if errors in implementation occur. It has thus been claimed that for indirect reciprocity to stabilize cooperation, reputation assessments must be of higher order, i.e. contingent not only on past actions, but also on the reputations of the targets of these actions. We show here that this need not be the case. A simple image scoring mechanism where more than just one past action is observed provides ample possibilities for stable cooperation to emerge even under substantial rates of implementation errors. (authors' abstract)Series: Department of Economics Working Paper Serie

    On the Density of Iterated Line Segment Intersections

    No full text
    Given S1, a finite set of points in the plane, we define a sequence of point sets Si as follows: With Si already determined, let Li be the set of all the line segments connecting pairs of points of Si j=1 Sj, and let Si+1 be the set of intersection points of those line segments in Li, which cross but do not overlap. We show that with the exception of some starting configurations the set of all crossing points S∞ i=1 Si is dense in a particular subset of the plane with nonempty interior. This region is the intersection of all closed half planes which contain all but at most one point from S1

    On the geometric dilation of curves and point sets

    No full text
    Let G be an embedded planar graph whose edges are curves. The detour between two points u and v (on edges or vertices) of G is the ratio between the shortest path in G between u and v and their Euclidean distance. The maximum detour over all pairs of points is called the geometric dilation δ(G). Ebbers-Baumann, Grüne and Klein have recently shown that every finite point set is contained in a planar graph whose geometric dilation is at most 1.678, and some point sets require graphs with dilation δ ≥ π/2 ≈ 1.57. We prove a stronger lower bound δ ≥ (1 + 10 −11)π/2 by relating graphs with small dilation to a problem of packing and covering the plane by circular disks

    Improved lower bound on the geometric dilation of point sets

    No full text
    Let G be an embedded planar graph whose edges are curves. The detour between two points p and q (on edges or vertices) of G is the length of a shortest path connecting p and q in G divided by their Euclidean distance |pq|. The maximum detour over all pairs of points is called the geometric dilation δ(G). Ebbers-Baumann, Grüne and Klein have shown that every finite point set is contained in a planar graph whose geometric dilation is at most 1.678, and some point sets require graphs with dilation δ ≥ π/2 ≈ 1.57. They conjectured that the lower bound is not tight. We use new ideas, a disk packing result and arguments from convex geometry, to prove this conjecture. The lower bound is improved to (1 + 10 −11)π/2

    Geometric dilation of closed planar curves: A new lower bound

    Get PDF
    Given any simple closed curve C in the Euclidean plane, let w and D denote the minimal and the maximal caliper distances of C, correspondingly. We show that any such curve C has a geometric dilation of at least arcsin( D ) + ( w ) 1

    Geometric Dilation of Closed Planar Curves: New Lower Bounds

    Get PDF
    Given two points on a closed planar curve, C, we can divide the length of a shortest connecting path in C by their Euclidean distance. The supremum of these ratios, taken over all pairs of points on the curve, is called the geometric dilation of C. We provide lower bounds for the dilation of closed curves in terms of their geometric properties, and prove that the circle is the only closed curve achieving a dilation of #/2, which is the smallest dilation possible. Our main tool is a new geometric transformation technique based on the perimeter halving pairs of C
    corecore